• 语文教案
  • 数学教案
  • 英语教案
  • 政治教案
  • 物理教案
  • 历史教案
  • 生物教案
  • 美术教案
  • 音乐教案
  • 地理教案
  • 化学教案
  • 科学教案
  • 求数列通项公式的解题思路

    时间:2020-03-10 07:47:44 来源:天一资源网 本文已影响 天一资源网手机站

    求数列通项公式的解题思路
      
      广东省高州市第二中学 梁志华
      
      数列既是高中数学的重要内容,也是学习高等数学的基础,因此,每年高考对本章内容均作较全面的考查,而且经常是以综合题、主观题的形式出现,难度较大,不过一般分小题、有梯度设问,往往是第1小题就是求数列的通项公式,难度适中,一般考生可突破,争取分数,而且是做第2小题的基础,因此,求数列通项公式的解题方法、技巧,每一位考生都必须熟练掌握。求数列通项公式的题型很多,不同的题型有不同的解决方法。下面结合教学实践,谈谈求数列通项公式的解题思路。
      
      一、已知数列的前几项
      
      已知数列的前几项,求通项公式。通过观察找规律,分析出数列的项与项数之间的关系,从而求出通项公式。这种方法称为观察法,也即是归纳推理。
      
      例1、求数列的通项公式
      
      (1)0,22——1/3,32——1/4,42+1/5……
      
      (2)9,99,999,……
      
      分析:(1)0=12——1/2,每一项的分子是项数的平方减去1,分母是项数加上1,n2——1/n+1=n——1,其实,该数列各项可化简为0,1,2,3,……,易知an=n——1。
      
      (2)各项可拆成10-1,102-1,103-1,……,an=10n——1。
      
      此题型主要通过让学生观察、试验、归纳推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生的思维能力。
      
      二、已知数列的前n项和Sn
      
      已知数列的前n项和Sn,求通项公式an,主要通过an与Sn的关系转化,即an -{ S1(n=1) Sn -Sn——1(n≥2)
      
      例2、已知数列{an }的前n项和Sn=2n+3,求an
      
      分析:Sn=a1+a2 +……+an——1+an
      
      Sn——1=a1+a2 +……+an——1
      
      上两式相减得 Sn -Sn——1=an
      
      解:当n=1时,a1=S1=5
      
      当n≥2时,an =Sn -Sn——1=2n+3-(2n——1+3)=2n——1
      
      ∵n=1不适合上式
      
      ∴an ={5(n=1) 2n——1(n≥2)
      
      三、已知an与Sn关系
      
      已知数列的第n项an与前n项和Sn间的关系:Sn=f(an),求an。一般的思路是先将Sn与an的关系转化为an与an——1的关系,再根据与的关系特征分为如下几种类型。不同的类型,要用不同的方法解决。
      
      (1)an=an——1+k。数列属等差数列,直接代公式可求通项公式。
      
      例3、已知数列{an},满足a1=3,an=an——1+8,求an。
      
      分析:由已知条件可知数列是以3为首项,8为公差的等差数列,直接代公式可求得an=8n-5。
      
      (2)an=kan——1(k为常数)。数列属等比数列,直接代公式可求通项公式。
      
      例4、数列{an}的前n项和Sn,a1=1,an+1=2Sn+1(n∈N+)
      
      求数列{an}的通项公式。
      
      分析:根据an与Sn的关系,将an+1=2Sn+1转化为an与an+1的关系。
      
      解:由an+1=2Sn+1
      
      得an=2Sn-1+1(n≥2)
      
      两式相减,得an+1-an=2an
      
      ∴an+1=3an (n≥2)
      
      ∵a2=2Sn+1=3
      
      ∴a2=3a1
      
      ∴{an}是以1为首项,3为公比的等比数列
      
      ∴an=3n-1
      
      (3)an+1=an+f(n),用叠加法
      
      思路:令n=1,2,3,……,n-1
      
      得a2=a1+f(1)
      
      a3=a2+f(2)
      
      a4=a3+f(3)
      
      ……
      
      +)an=an——1+f(n-1)
      
      an=a1+f(1)+f(2)+…+f(n-1)
      
      例5、若数列{an}满足a1=2,an+1=an+2n
      
      则{an}的通项公式=( )
      
      解:∵an+1=an+2n
      
      ∴a2 =a1+2×1
      
      a3=a2+2×2
      
      a4=a3+2×3
      
      ……
      
      +)an=an——1+2(n-1)
      
      an=a1+2(1+2+3+…+n-1)
      
      =2+2×(1+n-1)(n-1)
      
      =n2-n+2
      
      (4)an+1=f(n)an,用累积法
      
      思路:令n=1,2,3,……,n-1
      
      得a2 =f(1)a1 a3=f(2)a2 a4=f(3)a3
      
      ……
      
      ×)an=f(n-1)an-1
      
      an=a1·f(1)·f(2)·f(3)……f(n-1)
      
      例6、若数列{an}满足a1=1,an+1=2n+an,则an=( )
      
      解:∵an+1=2nan ∴a2 =21a1
      
      a3=22a2 a4=23a3
      
      ……
      
      ×) an=2n——1·an——1
      
      an=2·22·23·……·2n-1a1=2n(n-1)/2
      
      (5)an=pan——1+q, an=pan——1+f(n)
      
      an+1=an+p·qn(pq≠0),
      
      an=p(an——1)q, an+1=ran/pan+q=(pr≠0,q≠r)
      
      (p、q、r为常数)
      
      这些类型均可用构造法或迭代法。
      
      ①an=pan——1+q (p、q为常数)
      
      构造法:将原数列的各项均加上一个常数,构成一个等比数列,然后,求出该等比数列的通项公式,再还原为所求数列的通项公式。
      
      将关系式两边都加上x
      
      得an+x=Pan——1+q+x
      
      =P(an——1 + q+x/p)
      
      令x=q+x/p,得x=q/p-1
      
      ∴an+q/p-1=P(an——1+q/p-1)
      
      ∴{an+q/p-1}是以a1+q/p-1为首项,P为公比的等比数列。
      
      ∴an+q/p-1=(a1+q/p-1)Pn-1
      
      ∴an=(a1+q/p-1)Pn-1-q/p-1
      
      迭代法:an=p(an——1+q)=p(pan-2+q)+q
      
      =p2((pan-3+q)+pq+q……
      
      例7、数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+)求an
      
      解析:由Sn=2an-n 得Sn-1=2an-1-(n-1) (n≥2,n∈N+)
      
      两式相减得an=2an-1+1
      
      两边加1得an+1=2(an-1+1) (n≥2,n∈N+)
      
      构造成以2为公比的等比数列{an+1}
      
      ②an=Pan-1+f(n)
      
      例8、数列{an}中,a1为常数,且an=-2an-1+3n-1(≥2,n∈N)
      
      证明:an=(-2)n-1a1+3n+(-1)n·3·2n-1/5
      
      分析:这道题是证明题,最简单的方法当然是数学归纳法,现用构造法和迭代法来证明。
      
      方法一:构造公比为-2的等比数列{an+λ·3n}
      
      用比较系数法可求得λ=-1/5
      
      方法二:构造等差型数列{an/(-2)n}。由已知两边同以(-2)n,得an/(-2)n=an-1/(-2)n=1/3·(-3/2)n,用叠加法处理。
      
      方法三:迭代法。
      
      an=-2an-1+3n-1=-2(-2an-2+3n-2)+3n-1
      
      =(-2)2an-2+(-2)·3n-2+3n-1
      
      =(-2)2(-2an-3+3n-3)+(-2)·3n-2+3n-1
      
      =(-2)3an-3+(-2)·3n-3+(-2)·3n-2+3n-1
      
      =(-2)n-1a1+(-2)n-1·3+(-2)n-3·+32+……+(-2)·3n-2+3n-1
      
      =(-2)n-1a1+3n+(-1)n-2·3·2n-1/5
      
      ③an+1=λan+p·qn(pq≠0)
      
      (ⅰ)当λ=qn+1时,等式两边同除以,就可构造出一个等差数列{an/qn}。
      
      例9、在数列{an}中,a1=4,an+1+2n+1,求an。
      
      分析:在an+1=2an+2n+1两边同除以2n+1,得an+1/2n+1=an/2n+1
      
      ∴{an/2n}是以a1/2=2为首项,1为公差的等差数列。
      
      (ⅱ)当λ≠q时,等式两边同除以qn+1,令bn=an/qn,得bn+1=λ/qbn+p,再构造成等比数列求bn,从而求出an。
      
      例10、已知a1=1,an=3an-1+2n-1,求an
      
      分析:从an=3an-1+2n-1两边都除以2n,
      
      得an/2n=3/2 an-1/2n-1+1/2
      
      令an/2n=bn
      
      则bn=3/2bn-1+1/2
      
      ④an=p(an——1)q(p、q为常数)
      
      例11、已知an=1/a an——12,首项a1,求an。
      
      方法一:将已知两边取对数
      
      得lgan=2lgan——1-lga
      
      令bn=lgan
      
      得bn=2bn-1-lga,再构造成等比数列求bn,从而求出an。
      
      方法二:迭代法
      
      an=1/a a2n——1=1/a (1/a a2n——2)2=1/a3 a4n——2
      
      =1/a3 (1/a a2n——3)4=1/a7·an——38=a·(an——3/a)23
      
      =……=a·(a1/a)2n——1
      
      ⑤an+1=ran/pan+q(p、q、r为常数,pr≠0,q≠r)
      
      将等式两边取倒数,得1/an+1=q/r·1/an+p/r,再构造成等比数列求an。
      
      例12、在{an}中,a1=1,an+1=an/an+2,求an
      
      解:∵an+1=an/an+2
      
      ∴1/an+1=2·1/an+1
      
      两边加上1,得1/an+1+1=2(1/an+1)
      
      ∴{1/an+1}是以1/an+1=2为首项,2为公比的等比数列
      
      ∴ 1/an+1=2×2n-1=2n
      
      ∴an=1/2n-1
      
      以上罗列出求数列通项公式的解题思路虽然很清晰,但是一般考生对第三项中的5种类型题用构选法和迭代法都比较困难的。遇到此情况,可转化为第一种类型解决,即从an与Sn的关系式求出数列的前几项,用观察法求an。 相关关键词: 求数列通项公式的解题思路

    • 范文大全
    • 教案下载
    • 优秀作文
    • 励志
    • 课件
    • 散文
    • 名人名言